

Get to know:

Step 1: Initial Settings

Setting Time & Date

Sensitivity Adjustment

Step 2: Audio Confirmation Volume

Audio Demodulation

Process of separating the original audio signal from a modulated carrier wave. It allows us to recover and hear the original sound that was encoded onto the carrier wave.

Step 3: Understaning the Wide range of devices and their different frequencies

1. GPS Trackers (1.2 GHz, 1.5 GHz, and 1.6 GHz)

- GPS trackers typically operate in the L-band frequencies of the radio spectrum
- The GPS L1 frequency (1575.42 MHz) is the primary frequency, while L2 (1227.60 MHz) is often used for more advanced systems
- Some newer systems also use the L5 frequency (1176.45 MHz)
- When a GPS tracker is detected, the WAM-X25 will show a strong signal in this frequency range.

2. Wi-Fi Devices (2.4 GHz and 5 GHz)

- Wi-Fi devices operate on two main frequency bands: 2.4 GHz and 5 GHz.
- This includes Wi-Fi cameras, microphones, and other surveillance devices that use Wi-Fi to transmit data.
- When a Wi-Fi device is detected, the WAM-X25 will show a strong signal in one of these frequency ranges.

3. Cellular Devices (700 MHz to 2.7 GHz)

- Cellular devices, including cell phones and GSM/GPRS/3G/4G/5G trackers, operate on a variety of frequency bands depending on the technology and the country.
- In general, these frequencies range from about 700 MHz to 2.7 GHz.
- When a cellular device is detected, the WAM-X25 will show a strong signal in this frequency range.

4. Bluetooth Devices (2.4 GHz)

- Bluetooth devices, including Bluetooth microphones and other surveillance devices, operate in the 2.4 GHz band.
- When a Bluetooth device is detected, the WAM-X25 will show a strong signal in this frequency range.

5. UHF Bugs (400 MHz to 3 GHz)

- Ultra High Frequency (UHF) bugs are a type of covert listening device that operates in the UHF frequency range.
- When a UHF bug is detected, the WAM-X25 will show a strong signal in this frequency range.

Step 4: Main/Split Screen

- Shows live detected signals
- Band -> 20-element
 bar graph running
 vertically
- Number of illuminated bars -> the strength of the detected signal

Step 5: 2.4 GHz & 5 GHz Wi-Fi Detection

 Separate bands for detecting Wi-Fi, Bluetooth, Video and other 'Store & Forward' devices

SPY SHOP EUROPE.com

Step 6: Split Screen

 Screen -> divided into 2 halves:

Left side - all live detected signals Right side - detected events log list

Step 7: Live Graph Mode

- Detected signals are shown as vertical red lines on the graph
- Braph
 Height represents
 the signal strength
- 12 minutes history

SPY SHOP EUROPE.com

Step 8: Log Graph

 Useful for analyzing the data over time and identifying patterns or trends

Step 9: Wi-Fi Network Analyser

11:29:16	02/02/21	UK				⊲ 0)x	
Date	Time	WIFI MAC Add	Manufacturer	Type	Pkt	WIFI-SSID	2,4/5
02:02:21	11:29:01	8020DAF1898A	Sagemcom Bro	AP	06	Progression	2.4
02:02:21	11:29:01	8220DAF18888		AP	08	BTWI-fi	2.4
02:02:21	11:29:01	B8E9378F4233	Sonos	Ciert	42	HHD_t0aHx59QT4f	2.4
02:02:21	11 28 52	8220DAF18A88		AP	69	BTWI-fi	5.0
02:02:21	11:28:52	8020DAF1898B	Sagerncom Bro	AP	54	Progression	5.0
02:02:21	11 28:43	F4F26DA58048	TP-Link Tech	AP	943	TP-LINK_A58048	2.4
02:02:21	11:28:43	109ADDA19232	Apple	Client	48	-	2.4
02:02:21	11:28:43	C23BAFE630DF		Client	79		2.4
02:02:21	11:28:43	828EA07DFB82		Client	58		2.4
02:02:21	11:28:43	A483E742E7E0	Apple	Client	80		2.4
02.02.21	11:28:35	8220DAF18A89		AP	40	BTWifi-X	5.0
02:02:21	11:28:10	7C70BC59B86C	leee Registr	Client	22		2.4
02:02:21	11:26:11	FEDE7A0F90F9		Client	02		2.4
02:02:21	11:25:54	6ADB7756FF96		AP	69	Justin's iPhone	2.4
02:02:21	11:25:21	CEE431137AFE		Client	31		2.4
02:02:21	11:25:21	807215EB34EA	BSkyB Ltd	Client	01	NOWTVXH6FA	2.4
Scanni	ng WiFi C	hannel: 1	Next channel i	n 1 s	econ	ds.	

CLEAR	SCAN ACCESS	SCAN ALL	SCAN FOR	ORDER BY	ORDER BY
LIST	POINTS	DEVICES	CLIENTS	TIME	PACKETS

- Access Points -> A device that allows wireless devices to connect to a wired network using Wi-Fi or related standards (e.g. WLAN routers)
- Clients -> The device with a wifi radio that you use to connect to a wireless access point (e.g. phones, laptops, printers)

Step 10: Bluetooth Device Analyser

11:34:51	02/02/21	uk 🔊x					
Date	Time	BT MAC Add	Manufacturer	St.	Pkt		
02:02:21	11:34:45	728EFADC8F85		71	135		
02:02:21	11:34:45	4384F8888EEF		-56	59		
02:02:21	11:34:45	7DF9276FFF2E		-63	20		
02:02:21	11:34:45	52457D316B93		-60	25		
02:02:21	11:34:33	A483E720BDF0	Apple	-58	18		
02:02:21	11:32:08	43E5B2845670		-60	24		
02:02:21	11:31:55	44520D600759		-56	37		
02:02:21	11:30:55	6135D2F48BFE		-61	35		
02:02:21	11:30:19	5D9D9D0EFDE6		-92	05		

Scanning for Bluetooth Devices. New scan in 5 seconds.

CLEAR			ORDER BY	ORDER BY PACKETS
		(A haddened	The second s

Includes: Date & Time of Event, Bluetooth MAC Address, Manufacturer, Signal Strength in dBm, number of Data Packets detected

Step 11: Direction Find

- Used to locate the source of a detected signal
- The signal strength will increase as you get closer to the source of the signal
- Useful when trying to locate a hidden device

Step 12: Using the WAM-X25 Data Viewer Software

Download the log from your WAM-X25 onto a USB memory stick.
 Connect the USB memory stick to your computer.
 Open the WAM-X25 Data Viewer Software. You can find it in the 'Start' menu on your computer. If it's not visible there, select 'All Programs' and look for 'WAM-X25'.
 Once the software is open, click on 'Import Data from File' at the top left of the screen.

5) A folder should open showing the files on the USB stick. If not, select the file location manually.

6) Double click on the data file you wish to view. The data from the file should now be displayed in the WAM-X25 Data Viewer.

Summary How To:

1. Charging and Powering On: Ensure the device is fully charged and powered on.

2. Setting Up: Connect the antennas and set the time, date, and region.

3. Sensitivity Adjustment: Adjust the sensitivity according to the environment. Higher sensitivity levels will allow you to detect weaker signals, but may also result in more false positives.

4. Monitoring RF Activity: Monitor the RF activity in the area. The WAM-X25 has a wideband detector that covers 0-14 GHz, allowing it to detect a wide range of devices. It also has separate bands for detecting cellular and Wi-Fi signals.

Summary How To:

5. Analyzing Detected Signals: The WAM-X25 can demodulate and play back audio signals, allowing you to listen to any detected signals. It also has a live graph mode that shows a graph of all detected signals over a 12-minute period.

6. Logging and Reviewing Data: The WAM-X25 can log up to 10,000 events, allowing you to review detected signals at a later time. You can also use the WAM-X25 Data Viewer software to view stored data in a graphical format.

Summary How To:

7. Understanding Detected Frequencies: When you detect a signal, try to identify the type of device it might be coming from based on its frequency. For example, a signal in the 2.4 GHz or 5 GHz band could be from a Wi-Fidevice, while a signal in the 800 MHz to 2.2 GHz range could be from a cellular device.

8. Bluetooth and Wi-Fi Analysis: The WAM-X25 also has built-in Bluetooth and Wi-Fi analysers. The Bluetooth analyser can list nearby active Bluetooth devices, while the Wi-Fi analyser can provide detailed information about nearby Wi-Fi networks.